
HEAT TRANSFER IN A LAMINAR JET AT A WALL 

K. B. Pavlov and L. D. Pokrovskii UDC 517.9:536.2 

The consideration of the heating of media within the framework of the thermal conduc- 
tivity theory becomes incorrect if the change in the temperature takes place over broad lim- 
its; this leads to the need to take account of the dependence of the coefficient of thermal 
conductivity on the temperature. For example, such a dependence holds when radiative heat 
transfer plays a significant role in the mechanism [I]. 

If the thermal-conductivity coefficient depends on the temperature according to an ex- 
ponentlal law, then the propagation of thermal perturbations in a medium with a zero tempera- 
ture takes place with a finite velocity of the thermal wave front motion [i], If, in addi, 
tion to this, there are heat sources in the medium, then the thermal wave front may remain 
fixed with respect to the source of the thermal perturbations [2]. It is shown below that 
an analogous phenomenon of the spatial localization of thermal perturbations can be observed 
also with a solution of problems of a steady-state temperature boundary layer; this fact is 
a result of the combined effect of the exponential dependence of the thermal-conductivity 
coefficient on the temperature in a moving medium. 

Let us consider the problem of the steady-state distribution of the temperature in a sub- 
merged laminar jet, propagating along a solid plane heated surface, whose temperature T w = 
const ~ 0, Let a flat jet of liquid, having a temperature T = 0, issue in the direction of 
the x axis from a narrow sllt x = 0, y = 0 into a half-space y > 0, filled with the same ll- 
quid (Fig, 1), It is postulated that the thermal conductivity of the liquid depends on the 
temperature according to an exponential law, and that the remaining parameters of the liquid 
are constant. 

Neglecting viscous dissipation in the liquid, the system of heat~ and mass-transfer equa- 
tions, describing the above process in a boundary-layer approximation, is written In the form 
[3] 

Ou/Ox q-- Ov/Oy = O, 

uOu/Ox q- vOu/Oy = ~O~u/Oy ~, 

uOT/Ox + vOT/Oy = aO~T~/Oy 2, 

(1) 

where a = const > 0; n = const > 0; ~ is the viscosity of the liquid; anT n-x is the thermal- 
conductivity coefficient of the liquid. 

The projections of the velocity of the liquid u(x, y) and v(x, y) are determined inde- 
pendently of the values of the temperature T(x, y); the corresponding problem is self-similar 
and has the solution [3, 4] 

E / 1/2 
u (x,  y) - F' (~1) ~-~71 ' 

t (3NF' (~) - -  F (~1)) { ,~E '1"4 v (x,  y)  = ~- ~. .-~ / , 

(2) 

where ~ -- y(E/~Sx3) x/~ is a self-similar variable; E----fu u2dy dy=const is the retained 

invariant of the problem; the function F(n), a curve of which is shown in Fig. 2, is deter- 
mined implicitly (see, for example, [3]). In Fig. i, the flow lines are solid, and the lines 
of ~ = const are dashed. 
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The distribution of the temperature T(x, y) in the prewall jet must be determined with 
a sol~tion of the third equation of system (i), i.e., the thermal-conductivlty equation with 
the obvious boundary conditions 

T(x, 0) = Tw, T(x, oo) = 0. (3) 

The sought function T(x, y) and the derivatives 3Tn/~x, 3Tn/~y must be continuous everywhere 
with x, y a 0, which corresponds to the continuity of the temperature and the heat flux q = 
-~VT n. In addition, the physically obvious condition of the reversion of the heat flux to 
zero with y § ~ must also be satisfied 

(aT./a=)(X, oo) = (aT./ay) (x, ~o) = 0. (4) 

Using the usual premises of the theory of dimensionallty, we shall seek the self,similar so- 
lution T(X, y) of the problem (1)-(4) in the form T(x, y) = Twe(~), Here the function e(~) 
is a solution of the following problem: 

- -  F(~)0'(~)  ' ( 4 /n~ . )  I0"(~) 1", 
0 ( 0 ) =  t ,  0(oo) = (0~)'(oo) = 0, (5) 

where o w = v/naT n'~ is the effective Prandtl number in the liquid near the heated wall, 
w 

In the linear case with n = i, problem (5) was discussed in [5]; with n ~ I, Eq. (5) can 
be integrated only numerically; however, it is advisable to make a preliminary investigation 
of the analytical structure of its solution. In view of this, we consider the auxiliary 
problem 

= (4/ngw)[O (n)] , e(0) =i,O(oo) = (0")' (co) = 0, (6) 

differing from problem (5) in that the function F(n) is replaced by a constant Yo, 

We note that the function F(n) varies only slightly with q > nc = i0 [F(~) ~ qc) = F ]; 
therefore, for values of x satisfying the condition 

~c(Ex/v3)3/4<<t, (7) 

the solution T(x, y) = Tw0(n), obtained as the result of a solution of the auxiliary problem 
(6) with Fo = F , differs very little from the exact solution T(X,y)of problem (5). Figure 
3 gives p~files of the temperature along y; a) for values of xz and x= satisfying the condi- 
tion Exztv s ~ 0.01; Ex=/v s = 0.02; n = 1.5; o w = i [the exact solution of problem (5) is 
shown by a dashed llne]; b) for different value of n with Ex/v ~ = 0.01; Ow = I. 

One integration of Eq. (6), taking account of the conditions with q + ~, leads to the 
equation 

- - ( l / 4 ) ( n -  i )o .Fo  = ~ " - ~  (~)]', (8) 

whose partial solution, satisfying the condition 0iO) ffi i, has the form 

i 
(n - -  t)  o~Folq] '~- t .  (9 )  ~ ( ~ )  = [~ - 

With n < l, the function 0(n) (9) is determined everywhere with 0 < n ( "% and T(x, y) 
is written in the form 
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x , y ~ O ,  n < l .  (10) 

If n > i, the function ~ (n) reverts to zero with 

Equation (8) with n > i has the singular solution 0 = 0; therefore, the solution of ~roblem 
(6) with n > i must be regarded as a generalized solution, made up at the point ~ = nf of 
the partial solution (9) with 0 < ~ < ~f and the singular solution e = 0 with rlf < ~ 
(see Fig. 3). 

The generalized solution, constructed in the above~manner, generally speaking, has a weak 
discontinuity at the point n = ~f [the derivatives dm+~e/dn m+~ undergo a discontinuity at the 
point n = ~f, where m is the greatest whole number such that m < i/(n -- i)]. For example, 
with n ~ 1.5. the derivative ~'(q) is continuous~ with n = 2 it undergoes a discontinuity of 
the first kind, and, with n = 3, reverts to infinit~ (see Fig. 3), However, for any given 
~, 0 < n < ~, there is a discontinuity of e(n) and [en(~)] ', which~corresponds to a discon- 
tinuity of the temperature and the heat flux. The expression for T(x, t) with n > I is writ- 
ten in the form 

h e r e  t h e  s u r f a c e  

[ I ( n - - l ) ( r ~ F  o [ n ~i/~ ] ' T ( x , y ) =  T~ i--~ (v,--G~x 3) Y ] ~ - ' '  O<~y<~Yt' (11) 
(o, y s < y < ~ ,  

strictly bounds the regions in which ~(x, t) # 0 and ~(x, y) = O, i.e., there is spatial 
localization of the thermal perturbations. 

At the limit with n + 1 • 0, from (ii), (i0), respectively, it follows that 

T(x, y) = T~exp[--%FoE1/V4@x)~/~], x , y  ~ O, n = t. (13) 

In addition, as follows from (12), ~f(x) ~ ~ with n § i + 0, i.e,, with n = i, as with n < I, 
thermal perturbations exist everywhere in the region x, y ~ 0. 

The heat flux from the heated surface q(x, 0) =--a(~Tn/dy) (x, O) (x ~ 0) is calculated 
using the expressions (i0), (II), (13); here it is found that the value of q(x, 0) = Tw(VE) I/~- 
Fo/4x a/a does not depend on n. 

It can be verified that, with n > i, the heat flux is equal to zero everywhere at the 
surface y = yf(x); (~n),(~f) = 0. Thus, the conditions 0 = (~n), 0 (6) in the case n > i, 
are found to be satisfied with a finite value of n = ~f < ~, and not with ~ = ~, as in the 
case n S i. Precisely this fact reflects the spatial localization of the thermal perturba- 
tions with n > I. It must be noted that the above-mentioned localization is in no way due 
to the transition from problem (5) to the auxiliary problem (6), It can be shown that there 
is localization of the thermal perturbations if n > I in the equation of thermal conductivity 
(1). 
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We shall establish in this connection that, with n > I, there exists a region 0 < x < ~, 
0 < yf(x) ~ y < ~ (yf(x) =~f(vx) s/~/E~/~, ~f = const > 0), into which thermal perturbations 
from the heated surface do not penetrate. The latter assertation is equivalent to the fact 
that, with n > i, there exists a set of values of ~:~f s ~ < ~, with which the solution of 
Eq. (5) reverts to zero. 

In actuality, the solution e(~) of the problem (5) with 0 < ~, < ~(~, > 0 is a fixed 
value of n) can be regarded as a solution of the problem 

--F(n)O'(~) = ~16"(~)1", 0(~, )  = 0 ,  >1 0, 0(oo) = ( ~ , ) ' ( ~ )  = 0. (14)  

With ~ > n,, the inequality holds 

8(n) < 8(n), (15) 
where ~(n) is a solution to the analogous (14) problem with a constant coefficient F(n) 
F(n,) = c o n s t  

--F(q,)O'(n) aiT"(q)l", 8(~,) ' O., 8(oo) = (8")'(oo) = 0 (16) 

[F(~ , )  < F(~) w i t h  n > n ,  (see F ig .  2 ) ] ;  i . e . ,  t he  s o l u t i o n  of  problem (16) i s  a maJorant  of  
t he  s o l u t i o n  of  problem (14).  

Actually, we denote ~(n) = ~n(~), ~(~) = on(~), f(~) = F(~)/a, B = I/n and write Eqs, 
(14), (15) in the form 

~ (~) = - -  l (~) [ ~  (n)]', ~ 7  ( n )  = - -  i ( ~ , ) [ ~  (n)]'. ( 1 7 )  

We note  f i r s t  of  a l l  t h a t  i t  i s  s u f f i c i e n t  to  prove the  i n e q u a l i t y  (15) on ly  fo r  va lues  of  
f o r  which ~a(n) > 0 ( s i n c e ,  wh i l e  ~a r e v e r t s  to  zero a t  some n = n f ,  f o r  n > Df i t  i s  con- 

-tinued by ze ro ,  i . e . ,  by the  s i n g u l a r  s o l u t i o n  of  Eq. (14),  and the  i n e q u a l i t y  (15) i s  s a t i s -  
f i e d  t r i v i a l l y ) .  From the  g e n e r a l  t heo ry  o f  o r d i n a r y  d i f f e r e n t i a l  equa t ions  [6] i t  fo l lows  
that, for all such values of ~, the solution ~(~) of Eq. (17),satisfying the condition 
~(~,) = 8~ exists. 

Further, slnce ~(~! > O, the functions ~'(~) and ~"(~) have different signs. In 
addition, the function ~a(~) is continuous (this follows from the continuity of the heat 
flux). Therefore, from the condition ~(~) = 0 it follows that the function ~(~) decreases 
monotonically with respect to B: i.e., ~'(~) ~ 0 with all ~ > 0; the sign of equality is 
possible only with ~(~) = 0 (the function ~,(~) of course has the same properties). 

Setting a(~) : ~=(~) -- ~,(~), we obtain 

=" (,~) + / 0~,) [r (n) - @~ (n)] '  = - If (n) - i (n , ) i  [@~ (n)] ' ,  (18)  
~(n , )  = 0, ~(o~)  = ~ ' ( ~ )  = 0. 

Transforming ~ -- ~,P in accordance with the Lagrange formula, and integrating (18) tak- 
ing account of the conditions at infinity, we will have 

cz'(n) + p(~)=(~)  = ~(~), 

where P(n) = 8f(n,)[Y~, + (l --y)~a]8-*, 0 < y < l; 

(~) = ~ [ / (q )  - / 01.)1 [~,~ <,l)]'d~. 

The s o l u t i o n  of  the  equa t i on  o b t a i n e d ,  s a t i s f y i n g  the  c o n d i t i o n  a ( n , )  = 0, can be w r i t -  
t en  in the form 

a ( ~ ) = e x p  - - [ P ( ~ l ) d ~ l  @(~)exp p(~3)d~s d ~ .  (19) 
k ~, 

Under these circumstances, the function a(~) is bounded, since the functions ~(~) and ~z(n) 
have this property. Thus, the solution of the problem (18), where it exists (i.e., where 
@,(n) > 0 and ~2(~) > 0), can be represented in the form (19). 

Taking into consideration that ~ (n) ~ 0 [since ~='(n) ~ 0[, from (19), we obtain a(n) 
O, which proves inequality (15). 
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If 0, = 0, then problem (16) has only the trivial solution @(~) ~ O, ~, ~ ~ < ~; there~ 
fore, ~f = q, E ~. 

If 0, > 0, then the solution of problem (16) is constructed analogously to solution 
(II) of the auxiliary problem (6); it is written in the fo~m 

o (~)-- 0[ 1 anO, n -  ! 

O, ~I/~ q <  oo, 

~:  = ~I, + anO."-~/(( n - I )  F Of, ) ) ,  

from which, by virtue of (15), it follows that qf & qf < ~, 

Thus, with n > i, in a pre-wal! jet there always exists a region bounded by the surface 
y = yf(x), into which thermal perturbations from the heated wall do not penetrate, In the 
general case, it is possible to construct a qualitative description of the behavior of the 
function T(x, y) near this surface. For such a description) it is sufficient to limit the 
discussion of the thermal~conductivity equation (I) to the small neighborhood of some fixed 
point x,, y~ on the curve y = yf(x). Introducing the local coordinates at the point x~ y~ 

~(x, u) = ik(x - Xo) - (y - Uo]/( l  + k D ' / L  

~(x, u) = i(x - xo) + k ( y  - uo)] / ( l  + k~) ::~, 

k ---- (dy / /dx) (xo)  

[normal and tangential to the surface y = yf(x), respectively], we write in them the thermal~ 
conductivity equatiQn (I), taking into consideration that, in a small neighborhood of the 
point x,, y,, the functions u(x, y) and v(x, y) can be replaced by the constants u, = u(x| 
Yo) and, v(xo, Yo), and that the temperature depends essentially only on ~. As a result, we 
have 

d~T n 
- - ( t - t - k 2 )  t/2(kuo~vo)~=a d~2 " ( 2 0 )  

Taking account of expression (2), by an indirect verification it can be demonstrated that 
udyf/dx -- v > 0 and, consequently ku, -- v, > 0, As a result of a double integration of Eq, 
(20), taking account of the conditions at the surface y = yf(x)) we obtain the expression 

r(~) = [(n -- l)(ku o -- vo)(i ~ k2)V~(- -~) /nal l / (n- -~) ,  

d e t e r m i n i n g  t h e  d i s t r i b u t i o n  o f  t h e  t e m p e r a t u r e  n e a r  t h e  s u r f a c e  ~ = 0 w i t h  r < O, With  ~ > 
O, t h e  d i s t r i b u t i o n  o f  t h e  t e m p e r a t u r e  mus t  be  d e t e r m i n e d  by  t h e  s i n g u l a r  s o l u t i o n  o f  Eq. 
(20) (T(~) = 0), which exists only with n > i [6], 

In [I] it was shown that, in media with thermal-conductivity coefficient anTn~*(n > i)) 
the thermal perturbations are propagated with a finite velocity. The finite nature of the 
velocity of the propagation of the thermal perturbations and the deflection of the liquid in 
the pro-wall jet are the main reasons for the existence of a stationary surface in the case 
in question, i.e., the front of a "thermal wave," separating regions with T # 0 and T = 0. 
As has been noted in [7], the existence of a "thermal wave" front is connected with the sin- 
gular solution of an ordinary differential describing the self-similar distribution of the 
temperature. 

In conclusion we note that all the results established above automatically carry over 
to the corresponding problem of nonlinear diffusion, 

i. 

, 
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ASYMPTOTIC OF SOLUTION OF PROBLEM OF CONVECTIVE DIFFUSION 

TO A DROP WITH LARGE P~CLET NUMBERS AND FINITE REYNOLDS NUMBERS 

Yu, P, Gupalo A, D, P01yanln, V, D, Polyanln. 
and  Yu, S. Ryazantsev 

UDC 5 3 2 , 7 2  

A first approximation in the problem of steady-state convective diffusion to a spherical 
particle in a homogeneous translational flow has been obtained for zero [i] and finite 
Reynolds numbers [2. 3]. A two-term expansion in the case of Stokes flow around a solid 
particle is given in [4]. 

We postulate that the concentration of the substance dissolved in the flow is constant 
far from the drop, and that it is completely absorbed at the surface, In a spherical system 
of coordinates connected with the drop, the dimensionless equation of convective diffusion 
and the boundary conditions have the form (Pc is the P~clet number) 

r = t ,  c = O ;  r = o o ,  c = t ,  

Vr = 1 O, t ~ e 2 = P e - I  O 
r 2sinO 0 0 '  VO= rsinO Or' = - ~ "  

(I) 

Here the concentration at infinity, the velocity of the oncoming flow U, and the radius 
of the drop a are taken as the scales of the concentration, the velocity, and the length; the 
angle @ is reckoned from the direction of the flow at infinity, 

For the field of the velocities we use expressions obtained for a drop by the method of 
Joined asymptotic expansions [5]: 

, = % + Re,, (Re = =U/% 

I I fi 

9'-~ 8+I % ~8 fi+i 2 ~+~ ~0 (fi+1), + 

(2) 

where 8 is the ratio of the viscosities of the drop and the liquid surrounding it~ Re is the 
Reynolds number. 

We shall assume that the Peclet number is large (the parameter e is small); we introduce 
the extended caordinate Y in the diffusional boundary layer and represent the flow function 
[2) in the form of a series 
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